MP2I - 2024/2025 Informatique - TD n°8 - Récursivité terminale 1/2

TD n°8 - Corrigé

Exercice 1

let length 1 =

let rec aux 1 acc = match 1 with
[[1 -> acc
|t::q -> aux q (acc+l)

in aux 1 0;;

let sum 1 =

let rec aux 1 acc = match 1 with
[[1 -> acc
|t::q -> aux q (acc+t)

in aux 1 0;;

Exercice 2

let f1 n =
let rec aux n acc =
if n=0 then acc+l
else aux (n-1) (acc+l+nx3)
in aux n 0;;

let f2 1 el =
let rec aux 1 el acc = match 1 with
|[1 -> acc
|t::q when t=el -> aux q el (acc+l)
|t::q -> aux g el acc
in aux 1 el 0;;

let f3 1 =
let rec aux 1 lacc = match 1 with
|[1T -> lacc
|[t::q -> aux g (t::t::lacc)
in List.reverse (aux 1 []) (xLa liste lacc est construite vdasbnaersx);;

let f4 n x =
let rec aux n acc =
if n=0 then acc
else aux (n-1) (accx*x)
in aux n 1;;

Exercice 3

La fonction calcule f"(x), c’est a dire f composée n fois avec elle-méme, appliquée en x. La relation de récurrence

de la fonction récursive du TD est /*(x) = £(f* (x)). On a également f"(x) = f" 1(f(x)), qui permet I'écriture
d’un fonction récursive terminale.

let rec itere n f x =
match n with
| 0 -> x
| - -> itere (n - 1) f (f x)

Exercice 4

1. let rec concat 11 12 =
match 11 with
| 11 -> 12
| h::q -> h::(concat q 12);;

Cette fonction n’est pas récursive terminale, la derniére opération effectuée est la construction d’'une liste avec
h comme premier élément et le résultat de concat q 12 comme queue.

2. let rec rev_concat 11 12 =
match 11 with
| [1 -> 12
| h::q -> rev_concat q h::12;;

Cette fonction est récursive terminale

MP2I - 2024/2025 Informatique - TD n°8 - Récursivité terminale 2/2

3. let rec rev 1 = rev_concat 1 [];;
Cette fonction est récursive terminale car la fonction a laquelle elle fait appel est récursive terminale.
4. let rec concat2 11 12 = rev_concat (rev 11) 12;;

Cette fonction est bien récursive terminale car toutes les fonctions auxquelles elle fait appel le sont.

Exercice 5
On rappelle :

m List.fold_left : (’‘a -> 'b -> 'a) -> ’'a -> 'b list -> ’'aquiaune fonctionf : AXB — A, un élément
a € A et une liste [bg; b1;...;b,_1] d’éléments de B associe 'élément f(...f (f(f(a, bg), b1), b3)...,b,_1) de
A.

m List.fold_right : (’'a -> 'b -> 'b) -> ’a list -> 'b -> ’b qui, 4 une fonction f : A X B — B, une liste
[ag;aq;...an_1] d’éléments de A et un élément b € B, associe 'élément f(ag, f (a1, f(aqg, ..., f(a,_1,b)))
de B.

1. Questions pour vérifier la compréhension de la définition de fold_left.

let length 1 = fold_left (function a x -> a+l) 0 1;;

let length_bis 1 = fold_right (function x a -> a+l) 1 0;;
let somme 1 = fold_left (function a x -> a+x) 0 1;;

let prod 1 = fold_left (function a x -> axx) 0 1;;

2. La formule de récurrence est donnée dans I’énoncé, c’est la définition de fold_left (resp. fold_right). Pour le
cas de base on peut considérer la liste vide, dans ce cas on renvoie juste a (on peut juger que ca en respecte
pas la définition). On peut sinon considérer le cas de base a un élément [e] pour lequel on renvoie f a e (resp.
f e a).

let rec fold_left f a 1 = match 1 with
[[1 -> a
|h::q -> fold_left f (f a h) q;;

let rec fold_right f 1 b = match 1 with
[[1 ->Db
|h::q -> f h (fold_right f q b);;

Pour rendre fold_right récursive terminale, il faut renverser la liste. (On admet que List.rev est récursive
terminale, ou on reprend un exo précédent)

let rec fold_right f 1L b =
let rec aux f L b = match 1 with
|[[1 ->b
|[h::q -> aux f q (f b h)
in aux f (List.rev) b;;

3. Le type de mystlest 'a -> 'a list -> 'a list. mystl renvoie la liste 1st concaténée avec [elt]
Le type de myst2 est 'a list -> ’'a list. Il s’agit de 'application partielle de fold_right au cas ou f est fun a
b ->a:: b.
Le type de myst3 est 'a list -> a. Cette fonction calcule le minimum de lst.

4. List.map prend en entrée une fonction f & un argument et une liste [= [ey,...,e,] et renvoie la liste
[f(e1),...f (en)].
fold_right prend en entrée une fonction de deux arguments. On doit donc construire une fonction f’ qui prend
deux arguments en entrée. Ensuite comme fold_right calculera f'(eq, f' (e, ...f (e, b)...)), on sait que ¥’ doit
renvoyer une liste. f'ab = f(a) :: b convient.

let map f 1 =
let f' a b= (f a)::b in
fold_right f' 1 [];;

