
MP2I - 2024/2025 Informatique - TD n°8 - Récursivité terminale 1/2

TD n°8 - Corrigé
Exercice 1

let length l =
let rec aux l acc = match l with
|[] -> acc
|t::q -> aux q (acc+1)

in aux l 0;;

let sum l =
let rec aux l acc = match l with
|[] -> acc
|t::q -> aux q (acc+t)

in aux l 0;;

Exercice 2
let f1 n =
let rec aux n acc =
if n=0 then acc+1
else aux (n-1) (acc+1+n*3)

in aux n 0;;

let f2 l el =
let rec aux l el acc = match l with
|[] -> acc
|t::q when t=el -> aux q el (acc+1)
|t::q -> aux q el acc

in aux l el 0;;

let f3 l =
let rec aux l lacc = match l with
|[] -> lacc
|t::q -> aux q (t::t::lacc)

in List.reverse (aux l []) (*La liste lacc est construite vdash al'envers*);;

let f4 n x =
let rec aux n acc =
if n=0 then acc
else aux (n-1) (acc*x)

in aux n 1;;

Exercice 3
La fonction calcule 𝑓 𝑛(𝑥), c’est à dire 𝑓 composée 𝑛 fois avec elle-même, appliquée en 𝑥. La relation de récurrence
de la fonction récursive du TD est 𝑓 𝑛(𝑥) = 𝑓 (𝑓 𝑛−1(𝑥)). On a également 𝑓 𝑛(𝑥) = 𝑓 𝑛−1(𝑓 (𝑥)), qui permet l’écriture
d’un fonction récursive terminale.

let rec itere n f x =
match n with
| 0 -> x
| _ -> itere (n - 1) f (f x)

Exercice 4

1. let rec concat l1 l2 =
match l1 with
| [] -> l2
| h::q -> h::(concat q l2);;

Cette fonction n’est pas récursive terminale, la dernière opération effectuée est la construction d’une liste avec
ℎ comme premier élément et le résultat de concat q l2 comme queue.

2. let rec rev_concat l1 l2 =
match l1 with
| [] -> l2
| h::q -> rev_concat q h::l2;;

Cette fonction est récursive terminale

MP2I - 2024/2025 Informatique - TD n°8 - Récursivité terminale 2/2

3. let rec rev l = rev_concat l [];;

Cette fonction est récursive terminale car la fonction à laquelle elle fait appel est récursive terminale.

4. let rec concat2 l1 l2 = rev_concat (rev l1) l2;;

Cette fonction est bien récursive terminale car toutes les fonctions auxquelles elle fait appel le sont.

Exercice 5
On rappelle :

■ List.fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a qui a une fonction 𝑓 : 𝐴×𝐵 ↦→ 𝐴, un élément
𝑎 ∈ 𝐴 et une liste [𝑏0; 𝑏1; ...; 𝑏𝑛−1] d’éléments de 𝐵 associe l’élément 𝑓 (...𝑓 (𝑓 (𝑓 (𝑎, 𝑏0), 𝑏1), 𝑏2)..., 𝑏𝑛−1) de
𝐴.

■ List.fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b qui, à une fonction 𝑓 : 𝐴 × 𝐵 ↦→ 𝐵, une liste
[𝑎0; 𝑎1; ...𝑎𝑛−1] d’éléments de 𝐴 et un élément 𝑏 ∈ 𝐵, associe l’élément 𝑓 (𝑎0, 𝑓 (𝑎1, 𝑓 (𝑎2, ..., 𝑓 (𝑎𝑛−1, 𝑏)))
de 𝐵.

1. Questions pour vérifier la compréhension de la définition de fold_left.
let length l = fold_left (function a x -> a+1) 0 l;;

let length_bis l = fold_right (function x a -> a+1) l 0;;

let somme l = fold_left (function a x -> a+x) 0 l;;

let prod l = fold_left (function a x -> a*x) 0 l;;

2. La formule de récurrence est donnée dans l’énoncé, c’est la définition de fold_left (resp. fold_right). Pour le
cas de base on peut considérer la liste vide, dans ce cas on renvoie juste a (on peut juger que ça en respecte
pas la définition). On peut sinon considérer le cas de base à un élément [e] pour lequel on renvoie f a e (resp.
f e a).

let rec fold_left f a l = match l with
|[] -> a
|h::q -> fold_left f (f a h) q;;

let rec fold_right f l b = match l with
|[] -> b
|h::q -> f h (fold_right f q b);;

Pour rendre fold_right récursive terminale, il faut renverser la liste. (On admet que List.rev est récursive
terminale, ou on reprend un exo précédent)

let rec fold_right f l b =
let rec aux f l b = match l with
|[] -> b
|h::q -> aux f q (f b h)

in aux f (List.rev) b;;

3. Le type de myst1 est ’a -> ’a list -> ’a list. myst1 renvoie la liste lst concaténée avec [elt]

Le type de myst2 est ’a list -> ’a list. Il s’agit de l’application partielle de fold_right au cas où f est fun a

b -> a :: b.
Le type de myst3 est ’a list -> a. Cette fonction calcule le minimum de lst.

4. List.map prend en entrée une fonction 𝑓 à un argument et une liste 𝑙 = [𝑒1, ..., 𝑒𝑛] et renvoie la liste
[𝑓 (𝑒1), ...𝑓 (𝑒𝑛)].
fold_right prend en entrée une fonction de deux arguments. On doit donc construire une fonction f’ qui prend
deux arguments en entrée. Ensuite comme fold_right calculera 𝑓 ′ (𝑒1, 𝑓

′ (𝑒2, ...𝑓
′ (𝑒𝑛, 𝑏)...)), on sait que f’ doit

renvoyer une liste. 𝑓 ′𝑎𝑏 = 𝑓 (𝑎) :: 𝑏 convient.
let map f l =
let f' a b = (f a)::b in
fold_right f' l [];;

